Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 79(22): 5734-5745, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31391186

RESUMO

Targeting genetic alterations of oncogenes by molecular-targeted agents (MTA) is an effective approach for treating cancer. However, there are still no clinical MTA options for many cancers, including esophageal cancer. We used a short hairpin RNA library to screen for a new oncogene in the esophageal cancer cell line KYSE70 and identified YES proto-oncogene 1 (YES1) as having a significant impact on tumor growth. An analysis of clinical samples showed that YES1 gene amplification existed not only in esophageal cancer but also in lung, head and neck, bladder, and other cancers, indicating that YES1 would be an attractive target for a cancer drug. Because there is no effective YES1 inhibitor so far, we generated a YES1 kinase inhibitor, CH6953755. YES1 kinase inhibition by CH6953755 led to antitumor activity against YES1-amplified cancers in vitro and in vivo. Yes-associated protein 1 (YAP1) played a role downstream of YES1 and contributed to the growth of YES1-amplified cancers. YES1 regulated YAP1 transcription activity by controlling its nuclear translocation and serine phosphorylation. These findings indicate that the regulation of YAP1 by YES1 plays an important role in YES1-amplified cancers and that CH6953755 has therapeutic potential in such cancers. SIGNIFICANCE: These findings identify the SRC family kinase YES1 as a targetable oncogene in esophageal cancer and describe a new inhibitor for YES1 that has potential for clinical utility.See related commentary by Rai, p. 5702.


Assuntos
Amplificação de Genes , Oncogenes , Linhagem Celular Tumoral , Genes src , Proteínas Proto-Oncogênicas c-yes
2.
Cancer Lett ; 409: 116-124, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28923400

RESUMO

Microphthalmia-associated transcription factor (MITF) is expressed in melanomas and has a critical role in melanocyte development and transformation. Because inhibition of MITF inhibits cell growth in melanoma, MITF is a potential therapeutic target molecule. Here, we report the identification of CH6868398, which has a novel chemical structure and suppresses MITF expression at the protein level in melanoma cells. CH6868398 showed cell growth inhibition activity against MITF-dependent melanoma cells both with and without BRAF mutation and also exhibited anti-tumor efficacy in a melanoma xenograft model. Because selective BRAF inhibitors are standard therapeutics for BRAF-mutated melanoma, we investigated the effect of CH6868398 with a BRAF inhibitor, PLX4720, on cell growth inhibition. The addition of CH6868398 enhanced the cell growth inhibition activity of PLX4720 in melanoma cell lines. Furthermore, combination of CH6868398 and PLX4720 efficiently suppressed MITF protein and enhanced cleavage of Caspase3 and poly (ADP-ribose) polymerase (PARP) in melanoma cell lines. These data support the therapeutic potential of CH6868398 as an anti-melanoma agent that reduces MITF protein levels in combination with BRAF inhibitors.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Melanoma/tratamento farmacológico , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Indóis/farmacologia , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidores de Proteínas Quinases/administração & dosagem , Distribuição Aleatória , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Chemother Pharmacol ; 79(6): 1187-1193, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28447210

RESUMO

PURPOSE: Although treatment of melanoma with BRAF inhibitors and immune checkpoint inhibitors achieves a high response rate, a subset of melanoma patients with intrinsic and acquired resistance are insensitive to these therapeutics, so to improve melanoma therapy other target molecules need to be found. Here, we screened our chemical library to identify an anti-melanoma agent and examined its action mechanisms to show cell growth inhibition activity. METHODS: We screened a chemical library against multiple skin cancer cell lines and conducted ingenuity pathway analysis (IPA) to investigate the mechanisms of CH5552074 activity. Suppression of microphthalmia-associated transcription factor (MITF) expression levels was determined in melanoma cells treated with CH5552074. Cell growth inhibition activity of CH5552074 was evaluated in MITF-dependent melanoma cell lines. RESULTS: We identified an anti-melanoma compound, CH5552074, which showed remarkable cell growth inhibition activity in melanoma cell lines. The IPA results suggested that CH5552074-sensitive cell lines had activated MITF. In further in vitro studies in the melanoma cell lines, a knockdown of MITF with siRNA resulted in cell growth inhibition, which showed that CH5552074 inhibited cell growth by reducing the expression level of MITF protein. CONCLUSIONS: These results suggest that CH5552074 can inhibit cell growth in melanoma cells by reducing the protein level of MITF. MITF inhibition by CH5552074 would be an attractive option for melanoma treatment.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Tiazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Análise em Microsséries , Fator de Transcrição Associado à Microftalmia/genética , RNA Interferente Pequeno/genética
4.
Reprod Biol Endocrinol ; 9: 104, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21801462

RESUMO

Studies on the mechanisms of decidualization and endometriosis are often hampered by lack of primary endometrial cells. To facilitate in vitro studies, we established a human endometrial stromal cell line, KC02-44D, immortalized with human telomerase reverse transcriptase. Upon exposure to ovarian stimuli, KC02-44D cells showed similar cytoskeletal marker or gene expression and biochemical phenotype to primary endometrial stromal cells. KC02-44D would be useful for studies of human endometrial function and its associated pathologies.


Assuntos
Linhagem Celular , Endométrio/citologia , Células Estromais/fisiologia , Bucladesina/farmacologia , Antígenos CD13/metabolismo , Decídua/efeitos dos fármacos , Decídua/fisiologia , Regulação para Baixo , Estradiol/farmacologia , Feminino , Humanos , Interleucina-1beta/farmacologia , Acetato de Medroxiprogesterona/farmacologia , Pessoa de Meia-Idade , Neprilisina/metabolismo , Receptores de Estrogênio/biossíntese , Receptores de Progesterona/biossíntese , Células Estromais/efeitos dos fármacos , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...